

https://www.igi-global.com/book/handbook-researchcorrosion-sciences-engineering/309145

Table of Contents

Foreword	
Preface	xxvii
Acknowledgment	xxxii

Section 1 Advanced Engineering Tools and Technology for Corrosion Science

Chapter 1

Artificial Intelligence and Machine Learning in Corrosion Research 1
Valentine Chikaodili Anadebe, Corrosion and Materials Protection Division, CSIR-Central
Electrochemical Research Institute, Karaikudi, India & Academy of Scientific and
Innovative Research (AcSIR), Ghaziabad, India
Vitalis Ikenna Chukwuike, Corrosion and Materials Protection Division, CSIR-Central
Electrochemical Research Institute, Karaikudi, India & Department of Industrial
Chemistry, Federal University of Medical Science, Uburu, Nigeria
Chukwunonso Chukwuzuluoke Okoye, Department of Chemical Engineering, Nnamdi
Azikwe University, Awka, Nigeria
Lei Guo, School of Materials and Chemical Engineering, Tongren University, Tongren,
China
Rakesh Chandra Barik, Corrosion and Materials Protection Division, CSIR-Central
Electrochemical Research Institute, India & Academy of Scientific and Innovative
Research (AcSIR), Ghaziabad, India
Chapter 2
A Computational Protocol for the Study and Design of Effective Organic Corrosion Inhibitors: An
Overview
Morad El-Hendawy, New Valley University, Egypt
Chapter 3
Relationship Between the Chemical Structure and the Corrosion Inhibition Properties of Some
Organic Molecules: Challenges and Industrial Applications

Şaban Erdoğan, Yalova University, Turkey Burak Tüzün, Sivas Cumhuriyet University, Turkey

Correlation Between Halogens Atoms Elements, Their Positions on the Main Chain of Organic
Compounds, and Corrosion Inhibition Performance
Khaoula Alaoui, Ibn Tofail University, Morocco
Savas Kaya, Cumhuriyet University, Turkey
Rajae Salim, University Sidi Mohamed Ben Abdellah, Morocco
Adil Kamal, Ibn Tofail University, Morocco
Amine Moussaoui, Ibn Tofail University, Morocco
Amar Habsaoui, Ibn Tofail University, Morocco
Mohamed Ebn Touhami, Ibn Tofail University, Morocco
Younes El Kacimi, Ibn Tofail University, Morocco
Section 2
Nanomaterials and Smart Coatings for Corrosion Protection

Chapter 5

Anticorrosive Carbon-Based Polymer and Epoxy	Nanocomposite Coatings
Loutfy Madkour, Tanta University, Egypt	

Chapter 6

Corrosion Resistance Potential of Metal-Matrix Composites Reinforced With Carbon Nanofibers	
and Carbon Nanotubes	135
Loutfy Madkour, Tanta University, Egypt	

Chapter 7

Bio-Inspired Strategy for Concrete Anti-Corrosion	189
Tengfei Xiang, School of Architectural and Civil Engineering, China	
Lingjing Cui, School of Architectural and Civil Engineering, China	
Depeng Chen, School of Architectural and Civil Engineering, China	

Chapter 8

Modelling of the Surface Properties of Model Anti-Corrosion Materials by Inverse Gas	
Chromatography	223
Tayssir Hamieh, Maastricht University, The Netherlands	

Section 3 Corrosion of Biomaterials and Biomimetic Materials

Corrosion Behaviour of Metallic Biomaterials in Physiological Environments	
Rakesh Pani, KIIT University, India	
Rasmi Ranjan Behera, KIIT University, India	
Sudesna Roy, KIIT University, India	

Section 4 Green and Sustainable Corrosion Inhibition

Chapter 10

Chapter 11

Mohamed Khattabi, Ibn Tofail University, Morocco Amine Rkhaila, Ibn Tofail University, Morocco Khaoula Alaoui, Ibn Tofail University, Morocco Khadija Ounine, Ibn Tofail University, Morocco Brahim Chafik El Idrissi, Ibn Tofail University, Morocco Hassan Oudda, Ibn Tofail University, Morocco Ahmed El Yacoubi, Ibn Tofail University, Morocco Younes El Kacimi, Ibn Tofail University, Morocco

Chapter 12

Novel Bio-Based Green and Sustainable Corrosion Inhibitors: Development, Characterization,	
and Corrosion Inhibition Applications	343
Mohamed Rbaa, Ibn Tofail University, Morocco	
Mouhsine Galai, Independent Researcher, Morocco	
Elyor Berdimurodov, Faculty of Chemistry, National University of Uzbekistan, Tashkent,	
Uzbekistan	
Burak Tüzün, Independent Researcher, Turkey	
Mohamed Ebn Touhami, Independent Researcher, Morocco	
Abdelkader Zarrouk, Independent Researcher, Morocco	
Brahim Lakhrissi, Independent Researcher, Morocco	
Amr Elgendy, Independent Researcher, Egypt	

Chapter 13

Pharmaceutical Drugs as Prominent Corrosion Inhibitors	383
Berdimurodov Elyor, National University of Uzbekistan Named After Mirzo Ulugbek,	
Uzbekistan	
Eliboev Ilyos, Faculty of Chemistry, National University of Uzbekistan, Uzbekistan	
Abduvali Kholikov, Faculty of Chemistry, National University of Uzbekistan, Uzbekistan	
Khamdam Akbarov, Faculty of Chemistry, National University of Uzbekistan, Uzbekistan	
Dakeshwar Kumar Verma, Department of Chemistry, Government Digvijay Autonomous	
Postgraduate College, India	
Mohamed Rbaa, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of	
Sciences, Ibn Tofail University, Morocco	
Omar Dagdag, Centre for Materials Science, College of Science, Engineering, and	
Technology, University of South Africa, South Africa	
Berdimuradov Khasan, Faculty of Industrial Viticulture and Food Production Technology,	
Shahrisabz Branch of Tashkent Institute of Chemical Technology, Uzbekistan	

Chapter 15

Electrochemical and Computational Study of Cysteine as a Green Corrosion Inhibitor of Mild	
Steel in Sulfuric Acid Medium	. 405
Sihem Ouchenane, Badji Mokhtar University, Algeria	
Ramzy Jalgham, Bani Waleed University, Libya	
Sarra Rezgoune, Badji Mokhtar University, Algeria	
Gourisankar Roymahapatra, School of Applied Sciences, Haldia Institute of Technology,	
India	

Section 5 Applied Corrosion Science

Guidelines on the Use of Traditional Organic Sulfonate Corrosion Inhibitors	434
Sixuan Fan, Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research	
Institute, Chinese Academy of Sciences, China	
Chen Zhou, Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research	
Institute, Chinese Academy of Sciences, China	
Li Tan, Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research	
Institute, Chinese Academy of Sciences, China	
Xuechao Song, Laboratory for Advanced Lubricating Materials, Shanghai Advanced	
Research Institute, Chinese Academy of Sciences, China	
Yuanxing Li, Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research	
Institute, Chinese Academy of Sciences, China	
Jingchun Zhang, Laboratory for Advanced Lubricating Materials, Shanghai Advanced	
Research Institute, Chinese Academy of Sciences, China	
Jiusheng Li, Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research	
Institute, Chinese Academy of Sciences, China	
Xiangqiong Zeng, Laboratory for Advanced Lubricating Materials, Shanghai Advanced	
Research Institute, Chinese Academy of Sciences, China	

Chapter 17
Imidazole Derivative as a Novel Corrosion Inhibitor for Mild Steel in Mixed Pickling Bath
Moussa Ouakki, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of
Sciences, Ibn Tofaïl University, Morocco
Zakia Aribou, Independent Researcher, Morocco
Khadija Dahmani, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of
Sciences, Ibn Tofaïl University, Morocco
Otmane Kharbouch, Independent Researcher, Morocco
Elhachmia Ech-chihbi, Independent Researcher, Morocco
Mohamed Rbaa, Laboratory of Organic Chemistry, Catalysis, and Environment, Faculty of
Sciences, Ibn Tofaïl University, Morocco
Mouhsine Galai, Independent Researcher, Morocco
Mohammed Cherkaoui, Laboratory of Organic Chemistry, Catalysis, and Environment,
Faculty of Sciences, Ibn Tofaïl University, Morocco

Chapter 18

Corrosion Inhibition on Carbon Steel in Hydrochloride Acid Using Some Bolaamphiphile	
Surfactants	489
Driss Chebabe, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of	
Meknes, Morocco	

Chapter 19

Performance of Benzimidazole Derivatives as Potential Corrosion Inhibitors in Phosphoric Acid	
Solutions	501
Elhachmia Ech-chihbi, Independent Researcher, Morocco	
Rajae Salim, Independent Researcher, Morocco	
Moussa Ouakki, Independent Researcher, Morocco	
Ahmed Moussaif, National Center of Energy Sciences and Nuclear Techniques, Rabat,	
Morocco	
Zakia Rais, Independent Researcher, Morocco	
Mustapha Taleb, Independent Researcher, Morocco	

Corrosion Inhibition of Mild Steel in Acidic Pickling Baths: Benzoxazepine Derivatives as Acid	
Corrosion Inhibitors	529
Otmane Kharbouch, Ibn Tofaïl University, Morocco	
Khadija Dahmani, Ibn Tofaïl University, Morocco	
Fatima El Hajri, Ibn Tofaïl University, Morocco	
Moussa Ouakki, Ibn Tofaïl University, Morocco	
Mouhsine Galai, Ibn Tofaïl University, Morocco	
Hakima Nassali, Ibn Tofaïl University, Morocco	
Said Boukhris, Ibn Tofaïl University, Morocco	
Mohamed Ebn Touhami, Ibn Tofaïl University, Morocco	

Analyzing the Electrical Signals to Understand the Corrosion Presence in Dissimilar Spot Welds	
Using Austenitic Stainless Steels and Carbon Steels5	552
Nachimani Singgaran, Advan-kt Education Inc., USA	
Compilation of References5	575
About the Contributors	558
Index	569

Chapter 21 Analyzing the Electrical Signals to Understand the Corrosion Presence in Dissimilar Spot Welds Using Austenitic Stainless Steels and Carbon Steels

Nachimani Singgaran Advan-kt Education Inc., USA

ABSTRACT

Welding austenitic stainless steel (ASS) together with carbon steel (CS) is a common practice in spot welding research, but there is a lack of information about the effect of corrosion pertaining to the dynamic resistance, and therefore some surface-corroded carbon steel plates are intentionally welded together with 304L austenitic stainless-steel plates. The welded samples underwent the tensile shear test, hardness test, metallurgical observation, and electrical signal interpretation. Bonding strengths and hardness distributions are both significantly affected by corrosion presence, which reduces the weld strength in overall measure. Microscopic examinations show that the corrosion has randomly scattered around the vicinity of weld nuggets while the electrical signal distinguishes the corroded weld over good welds in terms of electrical resistances.

INTRODUCTION

Austenitic stainless steel (ASS) and carbon steel (CS) are regularly welded together in resistance spot welding research but the surface cleanliness of the carbon steel side that contains corrosion is always an ambiguity (Ajide and Makinde AF. (2011), Nimmo W et al.(2002), Jasmari et al (2011)). In this experimental study, some dissimilar weld joints that contained corrosive particles from carbon steel sheet become the prime interest, and therefore, the carbon steel sheets have been exposed to water and air for several days before being welded together with austenitic stainless steel sheets. The amount of corro-

DOI: 10.4018/978-1-6684-7689-5.ch021

sion is assumed in terms of surface appearance rather than the days of open-air exposure. Previously similar means of weld joints have been developed by using well-cleaned or uncorroded carbon steels with austenitic stainless steel coupons (Nachimani Charde (2013, 2014). Such joints have yielded good weldability characteristics between these two materials despite asymmetrical shapes. Similar researches have echoed a similar consensus, concerning the heat imbalances that create the asymmetrical weld joints (Nachimani Charde, 2016). As far as the process parameters are concerned, then the welding current and welding time with constant electrode force and unchanged electrode tips have directly influenced the weld growth(Nachimani Charde, 2014). In similar mean, the welding current (kA) and welding time (Cycle) have been gradually increased to compute the changes.

Experimental Methods

Both materials, the carbon steel and austenitic stainless steel, are prepared in a rectangular shape, having a length of 200 mm with a width of 25 mm in 1 mm thickness (figure 1). The chemical properties are listed in table 1 and the welding curves are shown in figures 2 and 3, respectively.

Figure 1. Lap joint of stainless steel and carbon steel sheets

Table 1. The chemical properties of base metals

304L Austenitic Stainless Steel										
Element	С	Cr	Ni	Mn	Si	S	Р			
	0.048	18.12	8.11	1.166	0.501	0.006	0.030			
Carbon Steel										
Element	С	Cr	Ni	Mn	Si	S	Р			
	0.23			0.90	0.006	0.050	0.040			

21 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/chapter/analyzing-the-electrical-signals-to-understandthe-corrosion-presence-in-dissimilar-spot-welds-using-austenitic-stainlesssteels-and-carbon-steels/323416?camid=4v1

Related Content

Functionalization of Surfaces with Optical Coatings Produced by PVD Magnetron Sputtering

Walter Raniero, Gianantonio Della Mea and Matteo Campostrini (2016). *Research Perspectives on Functional Micro- and Nanoscale Coatings (pp. 170-207).*

www.igi-global.com/chapter/functionalization-of-surfaces-with-optical-coatings-produced-by-pvdmagnetron-sputtering/149759?camid=4v1a

Surface Roughness Estimation of Turned Parts from Optical Image Measurements and Wavelet Decomposition

R. Kamguem, A. S. Tahan and V. Songmene (2014). *International Journal of Materials Forming and Machining Processes (pp. 48-72).*

www.igi-global.com/article/surface-roughness-estimation-of-turned-parts-from-optical-imagemeasurements-and-wavelet-decomposition/106959?camid=4v1a

Simulation and Validation of Forming, Milling, Welding and Heat Treatment of an Alloy 718 Component

Joachim Steffenburg-Nordenström and Lars-Erik Svensson (2017). *International Journal of Materials Forming and Machining Processes (pp. 15-28).*

www.igi-global.com/article/simulation-and-validation-of-forming-milling-welding-and-heat-treatment-of-an-alloy-718-component/189060?camid=4v1a

Study of Chip Morphology, Flank Wear on Different Machinability Conditions of Titanium Alloy (Ti-6AI-4V) Using Response Surface Methodology Approach

Kalipada Maity and Swastik Pradhan (2017). International Journal of Materials Forming and Machining Processes (pp. 19-37).

www.igi-global.com/article/study-of-chip-morphology-flank-wear-on-different-machinabilityconditions-of-titanium-alloy-ti-6al-4v-using-response-surface-methodologyapproach/176059?camid=4v1a